การแยกตัวประกอบ (อังกฤษ: factorization) ในทางคณิตศาสตร์ หมายถึงการแบ่งย่อยวัตถุทางคณิตศาสตร์ (เช่น จำนวน พหุนาม หรือเมทริกซ์) ให้อยู่ในรูปผลคูณของวัตถุอื่น ซึ่งเมื่อคูณตัวประกอบเหล่านั้นเข้าด้วยกันจะได้ผลลัพธ์ดังเดิม ตัวอย่างเช่น จำนวน 15 สามารถแยกตัวประกอบให้เป็นจำนวนเฉพาะได้เป็น 3 × 5 และพหุนาม x2 − 4 สามารถแยกได้เป็น (x − 2)(x + 2) เป็นต้น
จุดมุ่งหมายของการแยกตัวประกอบคือการลดทอนวัตถุให้เล็กลง อาทิ จากจำนวนไปเป็นจำนวนเฉพาะ จากพหุนามไปเป็นพหุนามลดทอนไม่ได้ (irreducible polynomial) การแยกตัวประกอบจำนวนเต็มเป็นส่วนหนึ่งของทฤษฎีบทมูลฐานของเลขคณิต ส่วนการแยกตัวประกอบพหุนามเป็นส่วนหนึ่งของทฤษฎีบทมูลฐานของพีชคณิต สำหรับพหุนาม สิ่งที่ตรงข้ามกับการแยกตัวประกอบคือการกระจายพหุนาม (polynomial expansion) ซึ่งเป็นการคูณตัวประกอบทุกตัวเข้าด้วยกันเป็นพหุนามใหม่
การแยกตัวประกอบจำนวนเต็มสำหรับจำนวนขนาดใหญ่อาจกลายเป็นข้อปัญหาที่ยุ่งยาก ซึ่งไม่มีวิธีใดที่สามารถแยกตัวประกอบจำนวนขนาดใหญ่ได้อย่างรวดเร็ว แต่ความยุ่งยากนี้เป็นประโยชน์ต่อการรักษาความปลอดภัยในขั้นตอนวิธีของการเข้ารหัสลับแบบกุญแจอสมมาตร อย่างเช่น RSA
สำหรับการแยกตัวประกอบของเมทริกซ์เรียกว่า การแยกเมทริกซ์ (matrix decomposition) ซึ่งมีวิธีการที่เหมาะสมแตกต่างกันไปสำหรับเมทริกซ์นั้นๆ เช่น การแยกแบบคิวอาร์ (QR decomposition) เป็นต้น วิธีหลักอย่างหนึ่งที่นิยมคือการทำให้เป็นผลคูณของ เมทริกซ์เชิงตั้งฉาก (orthogonal matrix) หรือเมทริกซ์ยูนิแทรี (unitary matrix) กับเมทริกซ์แบบสามเหลี่ยม (triangular matrix)
อีกตัวอย่างหนึ่งของการแยกตัวประกอบคือการแยกฟังก์ชันให้กลายเป็นการประกอบฟังก์ชัน (function composition) กับฟังก์ชันอื่นโดยมีเงื่อนไขที่เจาะจง ตัวอย่างเงื่อนไขเช่น ฟังก์ชันทุกฟังก์ชันสามารถเขียนให้อยู่ในรูปของการประกอบของฟังก์ชันทั่วถึง (surjective function) กับฟังก์ชันหนึ่งต่อหนึ่ง (injective function)
การแยกตัวประกอบเฉพาะของจำนวนเต็ม
ดูบทความหลักที่ การแยกตัวประกอบจำนวนเต็ม
จำนวนเต็มบวกทุกจำนวนสามารถแยกตัวประกอบเฉพาะและได้ผลลัพธ์เพียงแบบเดียวตามทฤษฎีบทมูลฐานของเลขคณิต เราสามารถแยกตัวประกอบของจำนวนเต็มโดยการหารจำนวนนั้นด้วยจำนวนเฉพาะซ้ำๆ จนกว่าจะไม่มีจำนวนเฉพาะอื่นใดหารได้ จะได้ว่าจำนวนเฉพาะที่เป็นตัวหารทั้งหมดคือตัวประกอบของจำนวนนั้น ซึ่งวิธีการนี้เป็นขั้นตอนวิธีหลักของการแยกตัวประกอบจากจำนวนเต็มซึ่งใช้ได้ผลกับจำนวนน้อยๆ สำหรับจำนวนเต็มขนาดใหญ่ยังไม่มีขั้นตอนวิธีใดที่มีประสิทธิภาพที่สุด อย่างไรก็ตามยังมีวิธีการที่หลากหลายแตกต่างกันออกไปเพื่อแยกตัวประกอบจำนวนขนาดเล็ก ไปเลย
ไม่มีความคิดเห็น:
แสดงความคิดเห็น